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ABSTRACT Parameter estimation of the nonlinear Muskingum model is a highly nonlinear 

optimization problem. Although various techniques have been applied to optimize the coefficients 

of the nonlinear Muskingum flood routing models, but an efficient method for this purpose in the 

calibration process is still lacking. The accuracy of artificial bee colony (ABC) algorithm is 

investigated in this paper to optimize the coefficients of nonlinear Muskingum model. The 

performance of this algorithm was compared with other optimization techniques. For evaluating 

the ability of the ABC algorithm, several statistical criteria such as sum of the square error, sum of 

the absolute error, mean absolute error and mean relative error were used in the present study. 

ABC is an intelligent algorithm, which can effectively overcome the prematurity and slowed 

convergence speed of the traditional evolution algorithms. It determines the best parameter values 

in terms of the sum of square residual between the observed and routed outflows. The simulation 

results show that the performance of ABC algorithm with the sum of the square of the deviations 

between the computed and observed outflows (SSQ) of 35.62 m
3 

s
-1

, the sum of the absolute value 

of the deviations between the computed and observed outflows coefficients (SAD) of 23.2 m
3
 s

-1
, 

the mean absolute errors between the routed and observed outflows (MAE) of 1.05 m
3
 s

-1 
and the 

mean relative errors between the routed and observed outflows (MRE) of 2.9% is comparable to 

those of other algorithms. Thus ABC provided an efficient way for parameter optimization of the 

nonlinear Muskingum model. 
 

Key words: Flood routing, Karoon River, Muskingum model, Parameters estimation, Parameters 

optimization 

 

1 INTRODUCTION 

The flood routing may be accomplished using 

two basic approaches that are generally called  

the “hydrologic routing approach" and the 

“hydraulic routing approach". The former is  

 

based on the unsteady flow equations for open  

channels. The amount of time and effort 

required to calibrate the model increases with 

the degree of model sophistication. The 

hydrologic routing approach is based on the  
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flow continuity principle and relation between 

discharge and storage. The Muskingum model, 

as one of the hydrologic routing techniques and 

the most frequently used flood routing methods 

in natural channels and rivers, was first 

developed by McCarthy (1938) after studies of 

the Muskingum river basin in Ohio (Chow et 

al., 1988). The Muskingum model uses the flow 

continuity equation, which was written as: 

 

tt

t OI
dt

dS
                                                 (1) 

 

 ttt OxxIKS )1(                                 (2) 

 

where: tS is the channel storage at time t; tI  

and tO are the rates of inflow and outflow at 

time t, respectively; K is the storage-time 

constant for the river reach, which has a value 

close to the flow travel time through the river 

reach; and x is weighting factor usually varying 

between 0 and 0.5 for reservoir storage, and 

between 0 and 0.3 for stream channels 

(Maidment, 1992). The values of the two 

parameters K and x are estimated using past 

recordsofinflow and outflow, and are then 

assumed to be characteristic values for a reach. 

The nonlinear form of the Muskingum model 

has been suggested by Gill (1978) and it is: 

 

 mttt OxxIKS )1(                               (3) 

 

where: m is additional parameter. This equation 

has more degrees of freedom than Eq. (2), 

which presumably would yield a closer fit to 

the nonlinear relation between storage and 

discharge. However, due to the presence of 

nonlinearity in the equation, the optimization 

procedure for estimating the optimal values of 

the parameters K , x , and m becomes highly 

complex. The values of these parameters cannot 

easily be graphically derived from historical 

inflow and outflow hydrographs. Therefore 

alternative parameter optimization techniques 

are intensively required that some of them have 

been reported for estimating parameters of the 

nonlinear Muskingum model (Gill, 1978; Tung, 

1985; Aldama, 1990; Yoon and Padmanabhan, 

1993; Mohan, 1997; Kim et al., 2001; Das, 

2004; Geem, 2006; Al-Humoud and Esen, 

2006; Chen and Yang, 2007; Chu, 2009; Chu 

and Chang, 2009; Wang et al., 2009; Luo and 

Xie, 2010; Wang et al., 2010; Barati, 2011; 

Karahan, 2012, Karahan et al., 2012, Gemm, 

2014). 

In the past years, some researchers adopted 

many optimization methods to optimize the 

parameters of the nonlinear Muskingum model. 

Mohan (1997) used genetic algorithm (GA) for 

parameter estimation of nonlinear Muskingum 

method and compared its performance with the 

NONLR procedure suggested by Yoon and 

Padmanabhan (1993). Kim et al. (2001) applied 

a harmony search (HS) algorithm for estimation 

of the three parameters of nonlinear 

Muskingum model. Das (2004) applied the 

Lagrange-multiplier technique to estimate the 

parameters for linear and nonlinear Muskingum 

models. The result obtained by the Lagrange 

multiplier was not as good as the results 

obtained by other researchers, who estimated 

the parameter values using the finite-difference 

form rather than the original hydrologic 

continuity equation. Geem (2006) introduced 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

technique. AL-Humoud and Esen (2006) 

presented two approximate methods for 

estimating Muskingum flood routing 

parameters. Chen and Yang (2007) developed 

the Gray-encoded accelerating genetic 

algorithm (GAGA) for parameter optimization 

of Muskingum model. Chu (2009) applied 

Adaptive Neuro-Fuzzy Inference System 

(ANFIS) and Muskingum model in flood 

routing. Chu and Chang (2009) applied particle 

swarm optimization (PSO) to estimate the 



Parameters Optimization of Nonlinear Muskingum Model ___________________ ECOPERSIA (2015) Vol. 3(1) 

849 

parameters of the nonlinear Muskingum model. 

Simulation results indicate that the proposed 

scheme can improve the accuracy of the 

Muskingum model for flood routing. Wang et 

al. (2009) proposed a hybrid chaotic genetic 

algorithm (HCGA) based on chaotic sequence 

and GA for parameter estimation of 

Muskingum model. Empirical results that 

involve historical data from existed paper reveal 

the proposed HCGA outperforms other 

approaches. The MPSO found the best 

parameter values compared to previous results. 

Luo and Xie (2010) proposed immune colonial 

selection algorithm (ICSA). Wang et al. (2010) 

presented a modified particle swarm algorithm 

(MPSO) for parameter optimization of 

Muskingum model. Barati (2011) applied the 

Nelder-Mead simplex (NMS) algorithm for the 

purpose of estimating the parameters of the 

nonlinear Muskingum model. Karahan (2012) 

proposed two easy methods namely „„Trial 

Error with Spreadsheet‟‟ and „„Nonlinear 

optimization with Solver‟' for the determination 

of Muskingum parameters. Both of the 

proposed procedures are tested for the three 

data sets. It has been shown that the model 

results are in good agreement with the 

observation values. Karahan et al. (2012) 

proposed a hybrid harmony search (HS) 

algorithm for the parameter estimation of the 

nonlinear Muskingum model. Gemm (2014) 

discussed two questions raised in the parameter 

estimation optimization for the nonlinear 

Muskingum flood routing model. 

In this paper, an optimal parameter 

estimation method for the nonlinear 

Muskingum model, namely artificial bee colony 

(ABC) algorithm, is proposed. ABC algorithm 

developed by Karaboga (2005) is an 

optimization algorithm which mimics the 

foraging behavior of honey bees. The 

performance of this method was applied to two 

case studies in the case study 1 the data set 

from Wilson (1974) was used. This data set has 

also been extensively studied by others (Gill, 

1978; Tung, 1985; Yoon and Padmanabhan, 

1993; Mohan, 1997; Kim et al., 2001; Geem, 

2006; Luo and Xie, 2010; Karahan, 2012; 

Karahan et al., 2012). Case study 2 was 

employed based on the inflow and outflow 

hydrographs from Karoon River, Iran, and the 

obtained results was compared with those 

obtained from genetic algorithm (GA).The main 

objective of our research was demonstrate 

whether the ABC algorithm could effectively 

and efficiently be applied to estimate optimal 

values of coefficients of the nonlinear 

Muskingum model. 

 

2 ARTIFICIAL BEE COLONY (ABC) 

ALGORITHM 

In the ABC algorithm, the colony of artificial 

bees contains three groups of bees: employed 

bees, onlookers and scouts. The employed bees 

go to an already discovered source and carry its 

nectar to the hive. The onlooker bees and scout 

bees are unemployed bees. The onlooker bees 

are watching the dances of the employed bees 

and choose a food source according to the 

quality of the source. The scout bees use 

external clues or internal motivation to find new 

undiscovered food sources. In the ABC 

algorithm, first half of the colony consists of 

employed artificial bees and the second half 

constitutes the onlookers. For every food 

source, there is only one employed bee. The 

employed bee whose food source is exhausted 

by the employed and onlooker bees becomes a 

scout. 

In the ABC algorithm, each cycle of the 

search consists of three steps: sending the 

employed bees onto the food sources and then 

measuring their nectar amounts; selecting of the 

food sources by the onlookers after sharing the 

information of employed bees and determining 

the nectar amount of the foods; determining the 

scout bee and then sending them onto possible 

food sources.  
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In the ABC algorithm, the position of a food 

source represents a possible solution of the 

optimization problem and the nectar amount of 

a food source corresponds to the quality 

(fitness) of the associated solution. The number 

of the employed bees or the onlooker bees is 

equal to the population size. 

The main steps of the algorithm are given 

below(Kisi et al., 2012): 

(1) Initialization 

(2) Evaluate the population 

Repeat 

(3) Employed Bees Phase 

(4) Onlooker Bees Phase 

(5) Scout Bees Phase 

(6) Memorize the best food source discovered 

so far 

Until 

Termination 

Criteria is satisfied 

 

Step 1: The ABC generates a randomly 

distributed initial population )0( GP of the 

number of food sources ( SN ) solutions (food 

source positions), where SN denotes the size of 

population. Each solution (food source) 

),...,2,1( SNixi   is a D-dimensional vector. 

Here, D is the number of optimization 

parameters. In this study, D is three parameters 

for the nonlinear form of the Muskingum 

model. 

Step 2: After initialization, the population is 

evaluated by substituting each solution ( ix ) in 

the objective function (f) which is the 

mathematical model of the system to be 

optimized as a minimization problem. The task 

of optimization process (Eq. (4)) is to find the 

optimal parameter vector 
)( ix  that minimizes 

the objective function: 

 

minarg)( 

ix                                             (4) 

By the evaluation, each solution is assigned a 

cost function ( )( ii xff  ) and a fitness value  

( ifitness ) by the following equation: 
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      (5) 

 

Step 3: In the employed bees‟ phase, a local 

search is conducted in the neighborhood of each 

solution by the following equation: 

 

)( kjijijijij xxxv                                    (6) 

 

where  BNk ,...,2,1 and  Dj ,...,2,1 are 

randomly chosen indexes. Although k is 

determined randomly, it has to be different from

i . ij is a random real number coming from 

uniform distribution within the range [−1, 1]. It 

controls the production of a neighbor food 

source position around ijx and the modification 

represents the comparison of the neighbor food 

positions visually by the bee. After each 

candidate source position ijv  is produced and 

then its quality is evaluated by the fitness 

function given by Eq. (5), its performance was 

compared with that of ijx . If the new food has 

equal or better nectar than the old source, it was 

replaced with the old one in the memory. 

Otherwise, the old one was retained. In other 

words, a greedy selection mechanism was 

employed as the selection operation between 

the old and the current food sources. To 

simulate the negative feedback which 

counterbalances the positive feedback, a 

solution may be abandoned during search 

likewise abandoning an exhausted food source 

by real bees. ABC algorithm determines the 

source to be abandoned by checking the number 

of local searches conducted in the neighborhood 
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of the solution. Therefore, if ix is kept in the 

population, exploitation counter is incremented 

by 1. If new solution is accepted, that counter is 

set to 0. 

Step 4: When the searches in the 

neighborhoods of all solutions are completed in 

the employed bees‟ phase, information about 

the sources is given to the onlookers, which is 

the simulation of the dances in a real hive. 

Since the onlookers choose more profitable 

solutions, profitability of the solutions should 

be measured. The probability of a source is 

proportional to its relative fitness (quality) with 

respect to whole population. In ABC algorithm, 

the probability values are calculated by Eq. (7) 

and the onlookers are distributed by a roulette-

wheel like selection procedure. 

 





SN

j

i

i
i

fitness

fitness
p

1

                                          (7) 

 

To apply roulette-wheel selection, a random 

real number within the range [0,1] is drawn for 

each source, and if ip value is bigger than this 

random number, an onlooker bee is assigned to 

the chosen source to make a local search in its 

neighborhood by Eq. (6). Once a neighbor 

solution, iv , is produced, it is evaluated. A 

greedy selection is applied between current 

solution, ix , and new solution, iv , as in 

employed bees‟ phase. If iv is superior to ix , it 

is kept in the population. Otherwise, ix  is kept 

and exploitation counter is incremented by 1. 

This process is repeated until the total number 

of local searches is equal to the number of food 

sources (SN). 

Step 5: During the employed bees‟ and 

onlooker bees‟ phases, the number of local 

searches (number of exploitations) in the 

neighborhood of the current solution is 

incremented if it cannot be improved by the 

local search. When new solution is kept in the 

population instead of the current one, the 

counter associated with the new solution is reset 

to 0. If the number of local searches exceeds a 

number which is called „„limit‟‟, this solution is 

assumed to be exhausted and it is abandoned. A 

new randomly produced solution is generated to 

be replaced with the exhausted one. 

Step 6: Solutions assigned cost function and 

fitness value is subjected to the employed bees‟, 

onlooker bees‟ and scout bees‟ phases and some 

better solutions may be found in the search 

space through the searches performed in these 

steps. When a cycle is completed, the best 

solution in whole population is selected and it is 

stored in a variable. This is memorization task 

of the algorithm. 

Step 7: The search process conducted 

through the phases of the algorithm is repeated 

until a termination criteria is satisfied. The 

termination criteria may be reaching a 

maximum number of cycles, producing a 

satisfactory goal value at the output of the system 

completing a predefined time limit, etc. 

The objective of parameter estimation for the 

nonlinear Muskingum model is to determine a set 

of optimal values of parameters that will give 

minimum difference between the observed and 

routed outflows. To achieve the best estimation of 

parameter values, the SSQ of differences between 

the observed and routed values of outflow is 

minimized. The objective function for the 

parameters K , x , and m is written as: 

 





n
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tt OOSSQ
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where tO is routed outflow at time t. 

In this study, the ABC algorithm written in 

MATLAB software was employed for 

nonlinear form of Muskingum model. There 

were three real variables K , x , and m  that 

need to be estimated. 

 

3 PERFORMANCE EVALUATION 

Four different types of standard statistical were 

considered as statistical performance 

evaluation. The sum of the square of the 

deviations between the computed and observed 

outflows (SSQ), the sum of the absolute value 

of the deviations between the computed and 

observed outflows coefficients (SAD), the 

mean absolute errors between the routed and 

observed outflows (MAE) and the mean relative 

errors between the routed and observed 

outflows (MRE) were used. The four 

performance evaluation criteria used in this 

study can be calculated utilizing the following 

equations: 

 





n

i

tt OOSSQ
1

2)(                                  (10) 
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where
tO and

tO are, respectively the observed 

and routed outflows and n  is the number of data. 

 

 

4  APPLICATION AND RESULTS 

4.1 Case study 1  

To investigate the performance of the ABC 

technique for the parameter estimation of the 

nonlinear Muskingum model, this technique 

was applied to an example first proposed by 

Wilson (1974). The reasons for selecting this 

example are as follows: (1) This example 

presents a pronounced nonlinear relationship 

between weighted flow and storage volume 

(Yoon and Padmanabhan, 1993; Mohan, 1997) 

(2) this example has also been used by Gill 

(1978), Tung (1985), Yoon and Padmanabhan 

(1993), Mohan (1997), Kim et al. (2001), Das 

(2004), Geem (2006), Luo and Xie (2010), 

Karahan (2012) and Karahan et al. (2012) for 

testing different parameter estimation 

methodologies. Therefore, the performance of 

the proposed ABC can effectively be compared 

with the previous reported results obtained with 

this example.  

After a thorough study of the sensitivity of 

the ABC algorithm parameters on the resulting 

errors in a population size of 500, a scout bee 

production of moderate value (Limit = Dne  ) 

and an evolution generation (EG) of 200 were 

used in the ABC algorithm for the estimation of 

the nonlinear Muskingum model parameters. The 

lower and upper bound of K , x , and m  

parameters were used (0.01, 0.4), (0.2, 0.3) and 

(1.5, 2.5). Since ABC algorithm is initiated 

randomly, the problem was solved for 20 different 

random seeds and the best (minimum) out of 20 

runs was taken as the solution of the problem. 

The routed outflow using the ABC method 

presented in Table 1. Table 1 also shows the 

outflows obtained using the least-squares 

method (LSM) (Gill, 1978), the HJ pattern 

search in conjunction with the CG method 

(HJ+CG), and HJ with the DFP method 

(HJ+DFP) (Tung, 1985), NONLR (Yoon and 

Padmanabhan, 1993), GA (Mohan, 1997), HS 

(Kim et al., 2001), BFGS (Geem, 2006), and 
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ICSA method (Luo and Xie, 2010), and “Trial-

Error with Spreadsheet” and “Nonlinear 

Optimization with Solver” (Karahan, 2012). 

The routed outflow hydrographs along with the 

observed inflow and outflow hydrographs are 

also presented in Figure 1.It is obvious from 

Figure 1 that the routed outflow hydrographs 

using ABC and the other methods, except Gill‟s 

(1978) method, closely follow the observed 

outflow hydrograph. 

 

Table 1 Observed and computed values of outflow for data set given by Wilson (1974) 
 

Time 

(h) 

Inflow 

(m3 s-1) 

Observed 

outflow  

(m3 s-1) 

Routed outflow (m3 s-1) 

LSM 
HJ+C

G 

HJ+DF

P 

NONL

R 
GA HS 

BFG

S 
ICSA 

Trial-

Error 
Solver ABC 

0 22 22 22 22 22 22 22 22 22 22 22 22 22 

6 23 21 22 22 22 22.6 22 22 22 22 21.86 21.87 22 

12 35 21 22.8 22.4 22.4 23 22.4 22.4 22.4 22.4 20.45 20.52 22.4 

18 71 26 29.6 26.8 26.7 24.2 26.3 26.6 26.6 26.6 18.76 19.07 26.7 

24 103 34 39.1 34.9 34.8 33.2 34.2 33.4 34.5 34.4 26.3 26.9 34.6 

30 111 44 47.6 44.5 44.7 47.1 44.2 44.1 44.2 44.2 42.81 43.58 44.2 

36 109 55 58 56.7 56.9 56.8 56.9 56.8 56.9 56.9 58.76 59.58 56.8 

42 100 66 67.1 67.3 67.7 66.2 68.2 68.1 68.1 68.1 71.57 72.32 67.9 

48 86 75 74.8 75.9 76.3 75 77.1 77.1 77.1 77.1 80.06 80.65 76.9 

54 71 82 80.4 81.9 82.2 80.7 83.2 83.3 83.3 83.3 83.52 83.91 83.2 

60 59 85 83.2 84.5 84.7 83.5 85.7 85.9 85.9 85.9 82.32 82.51 85.8 

66 47 84 82.8 83.4 83.5 84.3 84.2 84.5 84.5 84.5 78.64 78.63 84.5 

72 39 80 80.1 79.9 79.8 79.9 80.2 80.6 80.6 80.5 72.48 72.32 80.6 

78 32 73 74.5 73.6 73.3 74.3 73.3 73.7 73.7 73.6 65.76 65.49 73.8 

84 28 64 67.2 65.8 65.5 65.3 65.5 65.4 65.4 65.3 58.56 58.21 65.5 

90 24 54 58.1 56.9 56.5 55.9 55.8 56 56 55.9 52.1 51.7 56.1 

96 22 44 48.1 47.8 47.5 45.1 46.7 46.7 46.7 46.6 45.92 45.5 46.7 

102 21 36 37.6 38.9 38.7 35.4 38 37.8 37.8 37.7 40.56 40.15 37.7 

108 20 30 28.2 31.5 31.4 28.7 30.9 30.5 30.5 30.5 36.2 35.82 30.4 

114 19 25 21.9 25.8 25.9 24.3 25.7 25.3 25.2 25.3 32.62 32.26 25.1 

120 19 22 19.1 22 22.1 20.9 22.1 21.8 21.7 21.8 29.49 29.17 21.6 

126 18 19 19 20.1 20.2 20.4 20.2 20 20 20 27.22 26.93 19.9 
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Figure 1 Inflow hydrograph, outflow and routed hydrographs with different methods 

 

 
Figure 2 Difference between the routed and observed outflows 
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The differences between the observed and 

routed outflows of these eleven methods are 

presented in Figure 2. 

The parameters estimated by the ABC, 

Trial-Error, Solver, ICSA, GA, BFGS, HS, 

NONLR, HJ+DFP, HJ+CG, and LSM are 

presented in Table 2. For floods, the peak 

outflow and its time of occurrence are the 

important factors in assessing the impacts and 

controlling them. The deviations of peak of 

routed and actual outflows (DPO) and deviation 

of peak time of routed and actual outflows 

(DPOT) evaluate how the amount and time of 

occurrence of peak flow, respectively, are 

predicted. The values of these performance 

measures are also given in Table 2. 

By studying Table 2, we can see that the 

estimated value of the weighting factor x differs 

very little among the various methods, but the 

values of K and m vary quite significantly. ABC 

algorithm employed in this study has a balanced 

exploration and exploitation capability and 

therefore it can escape from local minima of 

multimodal surfaces. Also, the results achieved 

with ABC is satisfactory in computational 

precision with SSQ=35.62, SAD=23.2, 

MAE=1.05and MRE=2.49. Compared with those 

eleven methods, ABC model was found to reduce 

the SSQ by 0.056, 3.23, 3.26, 7.32, 21.44, 27.84, 

39.35, 309.01 %, 1612.46 % and 1600.36 % as 

compared to the ICSA, GA, BFGS, HS, NONLR, 

HJ+DFP, HJ+CG, LSM, Trial-Error, and Solver 

algorithms, respectively. It is clear from those 

values that the performance of the ABC for 

parameter optimal estimation of the nonlinear 

Muskingum model is better than the GA, BFGS, 

HS, NONLR, HJ+DFP, HJ+CG, LSM, Trial-

Error, and Solver algorithms and as good as the 

ICSA algorithm. 

It is clear from DPO and DPOT values that the 

performance of the ABC algorithm is less than 

the (HJ + CG), (HJ +OFP), NONLR, and GA 

methods, and it definitely resulted in better 

predicted values of outflows than the LSM, 

Trial-Error, Solver, HS, BFGS, and ICSA. It 

may be noted that even though the NONLR 

method resulted in comparatively good 

performance, the routed flows are shifted by 

one time unit (6 h) for the peak flow. 

To illustrate the precision and speed of the 

ABC method for parameter optimal estimation 

of the nonlinear Muskingum model, the 

estimating procedures were performed using a 

different evolution generation (EG) as the 

termination condition for the ABC technique. 

Table 3 shows the hydrologic parameter values 

that were obtained from the ABC method. 

Table 3 also presented the corresponding SSQ 

and SAD values that were calculated from the 

observed and routed outflows. 

 

Table 2 Comparison of the parameter values and statistics of different methods for data set given by Wilson (1974) 
 

Method K x m SSQ 
SAD 

(m
3
 s

-1
) 

MAE  

(m
3
 s

-1
) 

MRE 

(%) 
DPO DPOT 

LSM 0.01 0.25 2.347 145.69 46.26 2.1 5.61 1.80 0 

HJ+CG 0.0669 0.2685 1.9291 49.64 25.2 1.15 2.99 0.50 0 

HJ+DFP 0.0764 0.2677 1.8978 45.54 24.8 1.13 2.96 0.30 0 

NONLR 0.06 0.27 2.36 43.26 25.2 1.15 3.27 0.70 1 

GA 0.1033 0.2813 1.8282 38.23 23 1.05 2.53 0.70 0 

HS 0.0833 0.2873 1.863 36.78 23.41 1.06 2.55 0.90 0 

BFGS 0.0863 0.2869 1.8679 36.77 23.46 1.07 2.55 0.90 0 

ICSA 0.0884 0.2862 1.8624 35.64 23 1.05 2.49 0.90 0 

ABC 0.3180 0.2869 1.8863 35.62 23.2 1.05 2.49 0.80 0 
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Table 3 Sensitivity analysis of the parameter values in terms of the number of evolution generations for data set 

given by Wilson (1974) 
 

Evolution Generation 

(EG) 
K  x  m  SSQ SAD(m

3
 s

-1
) 

00 0.318064 0.286979 1.886372 35.62 23.2 

300 0.318064 0.286979 1.886372 35.62 23.2 

200 0.318064 0.286979 1.886372 35.62 23.2 

100 0.348949 0.286041 1.865179 35.73 23.1 

50 0.337298 0.287105 1.873139 35.88 23.2 

20 0.336275 0.284609 1.873071 36.15 23.5 

10 0.339568 0.286113 1.871768 36.65 23.3 

 

It is commonly desired that a method as an 

estimator should be unbiased, which means that 

the mean difference should be zero, and as such 

there should be both positive and negative 

differences. From Figure 2, it can be seen that 

the gradient-type methods such as NONLR and 

LSM show differences that are both positive 

and negative, and the mean difference that 

might be close to zero. 

However, the remaining methods, 

including the ABC, which are all near optimal 

methods, show differences that are almost all 

positive. This undesirable bias should be 

analyzed and discussed. In order to illustrate 

the reason of this bias, we must first prove 

that if the ABC method is biased or unbiased. 

Supposed K=0.3180, x=0.2869, and 

m=1.8863, the outflows can be generated by 

Eq. (3) and presented in Table 4. The 

parameter estimations were carried out, 

respectively, using a different EG as the 

termination condition for the ABC approach. 

The routed outflows obtained from the ABC 

and the corresponding differences calculated 

from the generated and routed outflows are 

presented in Table 4. Figure3 shows the 

corresponding differences in evolutional 

generation ranges from 10 to 200. It is clear 

that the differences are both positive and 

negative, and the mean differences close or 

equal to zero. As a result, Figure 3 suggests 

that the ABC method is unbiased. 

On the other hand, although Figure 2 

shows that the NONLR method and the LSM 

are unbiased, but the SSQs from the NONLR 

method and the LSM are much greater than 

the SSQ from the ABC approach. While we 

set the SSQ of the ABC method at the same 

level with the NONLR method and the LSM, 

respectively, the differences between the 

observed and routed outflows are both 

positive and negative and the mean 

differences close to zero separately. 

Therefore, we can conclude that the 

undesirable bias is derived from the error of 

observed outflows not the ABC method itself. 

In order to analyze the Muskingum of the 

ABC algorithm, it has been run with different 

population sizes (colony sizes) and evolutional 

generation ranges from 10 to 1000. In Table 5, 

the SSQ values with different colony sizes 

varying as 25 to 1000 have been presented. 
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Table 4 Comparison of the generated and routed outflows for data set given by Wilson (1974) 
 

Time 

(h) 

Inflow 

(m
3
 s

-1
) 

Generated 

Outflow 

(m
3
 s

-1
) 

Routed Outflow (m
3
 s

-1
) Differences (m

3
 s

-1
) 

Evolution Generation (EG) 

10 20 50 100 200 10 20 50 100 200 

0 22 22 22 22 22 22 22 0 0 0 0 0 

6 23 22 22 22 22 22 22 0 0 0 0 0 

12 35 22.4 22.4 22.4 22.4 22.4 22.4 0 0 0 0 0 

18 71 26.7 26.6 26.7 26.6 26.6 26.7 0.1 0 0.1 0.1 0 

24 103 34.6 34.5 34.6 34.5 34.5 34.6 0.1 0 0.1 0.1 0 

30 111 44.2 44.2 44.4 44.2 44.2 44.2 0 -0.2 0 0 0 

36 109 56.8 56.8 57 56.8 56.9 56.8 0 -0.2 0 -0.1 0 

42 100 67.9 68 68.2 68 68.1 67.9 -0.1 -0.3 -0.1 -0.2 0 

48 86 76.9 77 77.1 77 77.1 76.9 -0.1 -0.2 -0.1 -0.2 0 

54 71 83.2 83.3 83.3 83.3 83.3 83.2 -0.1 -0.1 -0.1 -0.1 0 

60 59 85.8 85.8 85.8 85.9 85.9 85.8 0 0 -0.1 -0.1 0 

66 47 84.5 84.5 84.5 84.5 84.5 84.5 0 0 0 0 0 

72 39 80.6 80.6 80.5 80.6 80.5 80.6 0 0.1 0 0.1 0 

78 32 73.8 73.7 73.6 73.7 73.6 73.8 0.1 0.2 0.1 0.2 0 

84 28 65.5 65.4 65.3 65.4 65.3 65.5 0.1 0.2 0.1 0.2 0 

90 24 56.1 56 55.9 56 55.9 56.1 0.1 0.2 0.1 0.2 0 

96 22 46.7 46.7 46.6 46.7 46.6 46.7 0 0.1 0 0.1 0 

102 21 37.7 37.8 37.7 37.7 37.7 37.7 -0.1 0 0 0 0 

108 20 30.4 30.5 30.4 30.4 30.5 30.4 -0.1 0 0 -0.1 0 

114 19 25.1 25.2 25.2 25.2 25.2 25.1 -0.1 -0.1 -0.1 -0.1 0 

120 19 21.6 21.7 21.7 21.7 21.7 21.6 -0.1 -0.1 -0.1 -0.1 0 

126 18 19.9 20 20 20 20 19.9 -0.1 -0.1 -0.1 -0.1 0 
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Figure 3 Difference between the routed and generated outflows in evolutional generation ranges from 10 to 200 

 

Table 5 Sensitivity analysis of the parameter values in terms of the number of evolution generations under 

different colony sizes for data set given by Wilson (1974) 
 

Evolution Generation 

(EG) 

Colony size 

25 50 100 200 500 1000 

1000 35.82 35.72 35.82 35.64 35.62 35.68 

500 35.82 35.72 36.1 35.64 35.62 35.68 

300 35.82 35.72 36.37 35.64 35.62 35.68 

200 35.9 35.72 36.37 35.64 35.62 35.81 

100 38.01 36.07 36.48 35.64 35.62 35.92 

50 39.48 36.55 36.48 35.99 35.73 36.13 

20 47.68 38.52 37.02 37 36.26 36.27 
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By studying Table 5, it is obvious that as the 

population size increases, the algorithm produces 

generally better results. However, after a 

sufficient value for colony size, any increment in 

the value does not improve the performance of the 

ABC algorithm significantly. For the test 

problems carried out in this work, the colony size 

of 200-500 can provide an acceptable 

convergence speed for search. 

As mentioned before, the „„scout bee‟‟ 

production is controlled by the control 

parameter „„limit‟‟ in the ABC algorithm.There 

is an inverse proportionality between the value 

of „„limit‟‟ and the scout production frequency. 

As the value of „„limit‟‟ approaches to infinity, 

the total number of the scouts produced goes to 

zero.The results of the ABC algorithm 

presented in Table 2 were obtained for the 

colony sizes of 100, 200 and 500.In order to 

show the effect of the scout production process 

on the performance of the algorithm, the SSQ 

values found for the different „„limit‟‟ values 

( Dn0.1 e  , Dn0.5 e  , Dn e  and „„without 

scout‟‟) and colony sizes (100, 200 and 500) is 

presented in Table 6. 

As seen from Table 6, for colony size 100, 

when the scout production frequency is very 

high (limit value = Dn0.1 e  ) or zero (without 

scout), the results obtained by the ABC 

algorithm are worse than those produced by 

using the moderate values for limit, such as, 

Dn0.5 e   and Dn e  . For colony sizes 200 

and 500, the production of scouts does not have 

any useful effect on the performance of the 

algorithm. However, as expected, it improves 

the search ability of the algorithm for the 

nonlinear Muskingum model and its benefit 

becomes much clearer for the smaller colony 

sizes. 

4.2  Case study 2 

The  Karoon  River  basin,  with  a  basin  area  

of 67,000  km
2
,  is  located  in  southern  part  

of  Iran between longitudes 48˚ 15′ and 52˚ 30′ 

east, latitude 30˚ 17′ and  33˚ 49′ north. The  

origin  of  the  Karoon River is 75 km far from 

the south of Esfahan city in the Zagros 

Mountain ranges and divided  in  two branches, 

Gargar and Shatit, in the north of Shooshtar 

city, in Bandeghir the two branches and the Dez 

river join  each  other  and  form  a  great  river  

called  the Karoon. The reach of between 

stations of Molasani (station no: 21-308, 48˚53′

E, 31˚35′N) as an upstream station and Ahwaz 

(station no:21-309, 48˚40′E, 31˚20′N) as a 

downstream station on the Karoon River 

operated by Khuzestan Water and Power 

Authority is treated in this study. Flood data 

from 30/11/2008 to 3/12/2008 are considered 

for the purpose. In the genetic algorithm, a 

population size of 100, a crossover probability 

of 0.9 and a mutation probability of 0.001 were 

used for the estimation of the nonlinear 

Muskingum model parameters (Mohan, 

1997).In ABC algorithm, a population size of 

500, a scout bee production of moderate value 

(Limit =ne×D) and a EG of 200 were used for 

the estimation of the nonlinear Muskingum 

model parameters. Since genetic and ABC 

algorithms are initiated randomly, the problem 

was solved for 20 different random seeds and 

the best (minimum) out of 20 runs was taken as 

the solutionof the problem. The lower and 

upper bound of K , x , and m parameters were 

used (1, 100), (0.000001, 0.3) and (0.01,1).The 

routed  outflow  hydrographs along  with  the  

observed  inflow  and  outflow  hydrographs are 

presented in Figure 4 and Table 7. 

The parameters estimated by the ABC and 

GA are presented in Table 8. 
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Table 6 Effect of the „„limit‟‟ value, which controls the scout production, on the performance of the ABC 

algorithm (The bold value indicates the best among the values obtained under different limit values) 
 

C
o

lo
n

y
 

si
ze

 

100 (ne = no = 50) 200 (ne = no = 100) 500 (ne = no = 250) 

Limit Without 

scout 

Limit Without 

scout 

Limit Without 

scout 0.1×ne×D  0.5×ne×D ne×D 0.1×ne×D  0.5×ne×D ne×D 0.1×ne×D  0.5×ne×D ne×D 

Mean 36.163 35.983 35.982 36.068 35.923 35.974 35.985 35.935 35.781 35.806 35.804 35.828 

S.D. 0.1969 0.1358 0.1967 0.1931 0.1355 0.1878 0.1845 0.1794 0.0811 0.1238 0.0958 0.1276 

 

ne, Number of employed bees; D, dimension of the problem; runs =120; total evaluation number = 15,000 

 

Table 7 Observed and computed values of outflow for the Karoon River data set 
 

Time 

(h) 
Inflow 

 (m
3
 s

-1
) 

Observed outflow 

(m
3
 s

-1
) 

Routed outflow (m
3
 s

-1
) 

GA ABC 

0 105 108 105 105 

2 106.5 108.5 105 105 

4 108 109 105 105 

6 109.5 109.5 105.5 105.4 

8 111 110 106.1 105.8 

10 114 111 106.9 106.5 

12 117 112 107.8 107.3 

14 138.5 112 109.4 108.6 

16 160 112 111.1 110 

18 209 114 119.9 117.1 

20 258 116 128.8 124.2 

22 352 123.5 152.7 144.3 

24 446 131 176.6 164.4 

26 562.5 152 228.7 211.6 

28 679 173 280.8 258.8 

30 787 265 361.7 339.3 

32 895 357 442.7 419.9 

34 977 578.5 538.8 523.1 

36 1059 800 634.9 626.2 

38 1100 852.5 728 729.6 

40 1141 905 821.1 833.1 

42 1132.5 916.5 892.9 911.6 

44 1124 928 964.7 990.1 

46 1078.5 943 1000.9 1025.4 

48 1033 958 1037.1 1060.8 

50 997.5 946 1036.1 1053.4 

52 962 934 1035.2 1046 

54 919 921.5 1018.5 1023.8 
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Table 7 (Continue) 
 

56 876 909 1001.9 1001.7 

58 825.5 884.5 973.3 969.1 

60 775 860 944.8 936.4 

62 734 830.5 906.6 895.4 

64 693 801 868.4 854.5 

66 649.5 769 829.3 814.6 

68 606 737 790.3 774.7 

70 566.5 707 749.7 734.2 

72 527 677 709.1 693.8 

74 491.5 644.5 669.5 655.1 

76 456 612 629.9 616.4 

78 424.5 587 592.5 580.4 

80 393 562 555.2 544.5 

82 366.5 535.5 520.8 511.7 

84 340 509 486.5 479 

86 318.5 485 455.9 450 

88 297 461 425.4 421 

90 278 438 399 396.1 

92 259 415 372.6 371.2 

94 246 394 349.5 349.4 

96 233 373 326.5 327.7 

 

 
 

Figure 4 Inflow hydrograph, outflow and routed hydrographs with GA and ABC algorithms 
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Table 8 Comparison of the parameter values and statistics of GA and ABC algorithms for the Karoon River data set 
 

Method K x m SSQ 
SAD 

(m
3
 s

-1
) 

MAE 

(m
3
 s

-1
) 

MRE 

(%) 
DPO 

DP

OT 

GA 20.92 0.00001 0.8913 182821.1 2317.35 47.29 9.41 79.1 0 

ABC 76.94 0.0001 0.7143 177161.4 2222.25 45.35 8.83 102.8 0 

 

It is obvious from Table 6 that the ABC 

performs better than the GA with 

SSQ=177161.4, SAD=2222.25, MAE=45.35 

and MRE=8.83. ABC algorithm was found to 

reduce the SSQ by 3.09% as compared to the 

GA. The performance of the ABC algorithm is 

less than the GA algorithmin respect to. DPO 

and as good as the GA in respect to DPOT. 

 

5 CONCLUSION 

The task of parameter estimation in the 

calibration process of the Muskingum model 

becomes more involved if the routing equations 

are nonlinear. In the past, various parameter 

estimation methods have been proposed to 

determine the parameter values for the nonlinear 

Muskingum model. In this paper, the ABC 

algorithm is developed for the parameter 

optimization of Muskingum models. The 

accuracy of the ABC was compared with the 

other reported methods based on the different 

criteria. The results indicated that the ABC 

approach generally performed better than the 

Trial-Error, Solver, LSM, HJ+CG, HJ+DFP, 

NONLR, GA, HS, BFGS, and ICSA methods for 

parameter estimation of the nonlinear 

Muskingum model. Comparison of the Trial-

Error, Solver, LSM, HJ+CG, HJ+DFP, NONLR, 

HS, BFGS, ICSA, and ABC methods in respect 

to sum of the square of the deviations between 

the routed and observed outflows (SSQ) 

indicated that the ABC performed better than 

other methods and as good as the ICSA. On the 

other hand, according to the sum of the absolute 

value of the deviations (SAD), the mean absolute 

errors (MAE) and the mean relative errors 

(MRE) between the routed and observed 

outflows, the ABC was found to perform as 

good as the GA and ICSA methods and better 

than the Trial-Error, Solver, LSM, HJ+CG, 

HJ+DFP, NONLR, HS, and BFGS methods. 

According to the comparison of routed and 

observed outflow hydrographs‟ peak and time to 

peak, the ABC was found to perform better than 

LSM, Trial-Error, Solver, NONLR, HS,BFGS, 

and ICSA methods and less than 

HJ+CG,HJ+DFP, and GA methods with 

DPO=0.8 and DPOT=0.  

The GA and ABC algorithms were 

compared for the Karoon River data set. The 

results showed that the ABC performs better 

than the GAin respect to SSQ, SAD, MAE 

and MRE values. According to DPO and 

DPOT, the ABC was found to perform less 

than GA with DPO=102.8 and DPOT=0.The 

results of the study are highly encouraging 

and suggest that ABC algorithm is viable for 

parameter estimation of the nonlinear 

Muskingum model. 

In this study, ABC algorithm was used for the 

parameter optimization of Muskingum model. 

Other optimization techniques such as Ant 

Colony and Tabu Search may also be used for the 

parameter optimization of Muskingum model 

instead of ABC and their accuracies may be 

compared with each other. 
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 الگوریتن کلونی زنبور عسل ر اساساراهترهای هدل هاسکینگام غیرخطی بپ بهینهتخوین 

 

1هْذی ٍفبخَاُ
 3ًیب ٍ ػلیزضب هقذم 2ػلی دستَراًی ،*

 

 هٌْذسی آثخیشداری،  داًشکذُ هٌبثغ طجیؼی، داًشگبُ تزثیت هذرس، ًَر، ایزاى ُداًشیبر گزٍ -1

 داًشجَی کبرشٌبسی ارشذ داًشکذُ هٌبثغ طجیؼی، داًشگبُ تزثیت هذرس، ًَر، ایزاى -2

 داًشیبر گزٍُ احیبء هٌبطق خشک ٍ کَّستبًی، داًشکذُ هٌبثغ طجیؼی، داًشگبُ تْزاى، کزج، ایزاى -3

 

 1334تیز  24 / تبریخ چبح:1334اردیجْشت  31/ تبریخ پذیزش: 1333اردیجْشت  6تبریخ دریبفت: 

 

ّبی هتؼذدی ثزای تخویي پبراهتزّبی هذل هبسکیٌگبم غیزخطی هسئلِ کبهلاً غیزخطی است. اگزچِ رٍش چکیده

رٍش کبرآهذی ثزای ایي ٌَّس سبسی ضزایت هذل رًٍذیبثی سیلاة هبسکیٌگبم غیزخطی ثِ کبر گزفتِ شذُ است اهب ثْیٌِ

سبسی پبراهتزّبی هبسکیٌگبم غیزخطی الگَریتن کلًَی سًجَرػسل ثزای ثْیٌِ ّذف ارائِ ًشذُ است. در ایي هقبلِ صحت

شذ. ثزای ارسیبثی تَاًبیی الگَریتن کلًَی سبسی هقبیسِ ِّبی دیگز ثْیٌثزرسی شذُ ٍ کبرآیی ایي الگَریتن ثب رٍش

ّبی آهبری اس قجیل ریشِ هیبًگیي هزثؼبت خطب، هجوَع خطبی هطلق،  سًجَرػسل، در هطبلؼِ حبضز اس تؼذادی اس ًوبیِ

 ػسل الگَریتن َّشوٌذی است کِ هتَسط خطبی هطلق ٍ هتَسط خطبی ًسجی استفبدُ شذ. الگَریتن کلًَی سًجَر

ّبی تکبهلی سٌتی غلجِ ًوبیذ. ثْتزیي گزایی سٍدٌّگبم ٍ آّستِ ًسجت ثِ الگَریتنتَاًذ ثِ طَر هَثزی ثب سزػت ّن هی

سبسی ًشبى . ًتبیج شجیِشذهقبدیز پبراهتزّب اس ًظز هجوَع هزثؼبت ثبقیوبًذُ ثیي دثی هشبّذاتی ٍ رًٍذیبثی شذُ تؼییي 

هجوَع هزثؼبت اًحزاف ثیي دثی هحبسجبتی ٍ هشبّذاتی ثزاثز  داد کِ کبرآیی الگَریتن کلًَی سًجَرػسل ثب

هتزهکؼت ثزثبًیِ،  2/23اًحزاف ثیي دثی هحبسجبتی ٍ هشبّذاتی ثزاثز  هجوَع هقذار هطلقهتزهکؼت ثزثبًیِ، 62/35

هتزهکؼت ثزثبًیِ ٍ هتَسط خطبی ًسجی ثیي دثی 05/1هتَسط خطبی هطلق ثیي دثی هحبسجبتی ٍ هشبّذاتی ثزاثز 

سبسی  ثٌبثزایي رٍشی کبرآ ثزای ثْیٌِ .ّبستقبثل هقبیسِ ثب دیگز الگَریتن درصذ 3/2سجبتی ٍ هشبّذاتی ثزاثز هحب

 ثبشذ.پبراهتزّبی هذل هبسکیٌگبم غیزخطی هی

 

 هذل هبسکیٌگبمرًٍذیبثی سیل، ، ، رٍدخبًِ کبرٍىپبراهتز سبسیثْیٌِپبراهتز،  زآٍردث کلوات کلیدی:


