Soil Quality Indices in Pure and Mixed Forest Stands of Southern Caspian Region

Yahya Kooch¹ *, Fatemeh Rostayee² and Seyed Mohsen Hosseini³

¹Assistant Professor, Faculty of Natural Resources, Tarbiat Modares University, Mazandaran, Noor, Iran
²M.Sc. Student, Faculty of Natural Resources, Tarbiat Modares University, Mazandaran, Noor, Iran
³Professor of Forestry, Faculty of Natural Resources, Tarbiat Modares University, Mazandaran, Noor, Iran

Received: 29 March 2015 / Accepted: 3 August 2015 / Published Online: 31 October 2015

ABSTRACT The present study aimed to assess pure planted species (i.e., Alnus subcordata L., Populus deltoids L., Taxodium distichum L. Rich) and a mixed natural forest (i.e., dominated by Quercus castaneifolia C. A. Mey. - Carpinus betulus L. - Parrotia persica C. A. Meyer) on basis of some soil quality indices in Mazandaran Province, northern Iran. Sixteen samples per stand were taken from the top 10 cm of soil and bulk density, texture, water content, pH, EC, organic C, total N, available nutrients, earthworm biomass, microbial respiration, fine root biomass with organic C and total N of litter layer were determined. Nine criteria (i.e., silt, EC, K, Ca, Mg, microbial respiration, fine root biomass, nitrogen mineralization and litter C/N) were selected according to Principal Component Analysis (PCA) as Minimum Data Set (MDS). The analytical hierarchy process (AHP) method was employed to assign the data integration in an index. The calculated overall priority based on nine criteria, showed that the A. subcordata forest type had higher ecological potential (0.370) compared to the other stands. Whereas, P. deltoids mixed natural forest and T. distichum with ecological potential of 0.295, 0.213 and 0.122 had next priorities, respectively. As a conclusion, the N-fixing species, A. subcordata, was found more efficient in improving soil quality in degraded forest regions.

Key words: Broad-leaved species, Forest Seed Centre of Khazar, Hyrcanian Forest, Needle-leaved species, Soil characteristics

1 INTRODUCTION

The Hyrcanian or northern forests of Iran stretch up to an altitude of 2800 m above sea level and encompass different forest types thanks to the 80 tree and shrub species found there (Sagheb-Talebi et al., 2014). It is obvious that these forests have been under continuous degradation over the last few decades (Kooch et al., 2014), and there is an urgent need to maintain the functions of this unique forest ecosystem. National forest management officials have acknowledged this fact and have initiated action for the sustainable management of the Caspian Forests. Different management schemes have been planned for implementation, such as documenting and exhibiting the forest disturbance, and supervising and managing the region’s remaining natural forest ecosystems (Poorzady and Bakhtiari, 2009). Abandoning agriculture and tree planting for commercial or restoration purposes are also two main methods of forest restoration. There have been many
plantations of endemic and exotic species in degraded forest areas which have certainly had many effects on the ecosystem, specifically on soil fertility and nutrients. Despite the existence of extensive afforested areas and the amount of time since plantation, few studies offer a critical overall examination of the development and ecological consequences of afforestation in the Hyrcanian region (Haghdoost et al., 2011), especially those related to soil properties.

Soil is an important component of terrestrial ecosystems because it preserves nutrient reserves and supports many biological processes. To preserve this resource and its functions, it is necessary first of all to know the conditions and the processes occurring in it, for example, through the determination of soil quality (SQ) (Carter, 2002; Marzaioli et al., 2010). The SQ indices have been defined as soil processes and properties that are sensitive to changes in soil functions (Aparicio and Costa, 2007). It is important to build a simple, sensitive, and workable indicator method for SQ evaluation (Dumanski and Pieri, 2000). The SQ may be affected by human management practices (e.g. forest plantation) because these may cause alterations in soil physical, chemical and biological properties (Caravaca et al., 2003). Different methods have been developed for SQ evaluation, from qualitative or semi quantitative visual approaches (Ball et al., 2007; Shepherd, 2009) to quantitative methods based on laboratory analysis and calculating SQ indices using mathematic and statistical methods (Andrews et al., 2004). The SQ indices have been successfully applied at many scales and locations (Arshad and Martin, 2002; Aparicio and Costa, 2007; Masto et al., 2008). These indicators should be a combination of chemical, physical, and biological properties (Aparicio and Costa, 2007; Qi et al., 2009; Lima et al., 2013). Several authors have proposed sets of SQ indices (Masto et al., 2008; Marzaioli et al., 2010), and have evaluated SQ based on the total data set (TDS) indicator method they selected. Also, representative indicators were suggested by many authors, such as the minimum data set (MDS), selected according to correlation between indicators and measurement facility and the Delphi data set (DDS), selected according to the importance of the indicators to SQ based on the opinion of experts (Herrick, 2000; Zhang et al., 2004; Rezaei et al., 2006; Govaerts et al., 2006; Zhang et al., 2011).

A common feature of these based-indicator methods is that they are all identified and described by scientists and land managers according to their own terminology (Ditzler and Tugel, 2002). The present study aimed to assessment of planted species (Alnus subcordata L., Populus deltoids L., Taxodium distichum L. Rich) and a mixed natural forest (dominated by Quercus castaneifolia C. A. Mey. – Carpinus betulus L. – Parrotia persica C. A. Meyer) on basis of SQ indices in Mazandaran Province, northern Caspian region.

2 MATERIALS AND METHODS

2.1 Study area

The study area, Forest Seed Centre of Khazar, is located in the southern of Mahmudabad City, in Mazandaran Province, north of Iran. This area expends between 36° 38’ N and 52° 16’ E latitudes and longitudes, respectively. The study plantations composed of A. subcordata L., P. deltoids L. and T. distichum L. Rich. These plantations were planted in 1999 at a spacing of 4x4 m (Soleimany Rahimabady et al., 2015). Beside these planted stands, a mixed natural forest dominated by Q. castaneifolia C. A. Mey. – C. betulus L. – P. persica C. A. Meyer was considered (Figure 1). The mean of maximum and minimum temperature were 24.4°C (in June) and 7.6°C (in December), respectively. The most of annual precipitation was 163 mm (in October) (Soleimany Rahimabady et al., 2015). The climate is temperate moist and the mean of altitude from sea surface at the study site is nearly 30 m. The total slope aspect of region is facing north (Soleimany Rahimabady et al., 2015).
2.2 Soil sampling and laboratory analysis
Four hectare areas (200×200 m) were selected for each stand forest in the study region. Soil sampling was carried out during the summer time using a randomly systematic method. Four soil profiles (20×20 cm) were dug along the four parallel transects in the central part of each afforested stand, thus resulting in 16 soil samples for each stand at 0-10 cm depth (Lafleur et al., 2015). The same sampling procedure was carried out also for the mixed natural forest. Litter samples, simultaneously with soil samples, were collected from each stand. Total C and N contents in litter samples were determined in quadruplicate, using dry combustion with an elemental analyzer (Carrillo et al., 2012). Soils were air-dried and passed through 2-mm sieve. Bulk density was measured by Plaster (1985) method (clod method). Soil texture was determined by the Bouyoucos hydrometer method (Bouyoucos, 1962). Soil water content was measured by drying soil samples at 105° C for 24 hours. Soil pH was determined using an Orion Ionalyzer Model 901 pH meter in a 1:2.5, soil: water solution. EC (electrical conductivity) was determined using an Orion Ionalyzer Model 901 EC meter in a 1:2.5, soil: water solution. Soil organic C was determined using the Walkey-Black technique (Allison, 1975). The total N was measured using a semi Micro - Kjeldhal technique (Bremner and Mulvaney, 1982). The available P was determined with spectrophotometer by using Olsen method (Homer and Pratt, 1961). The available K, Ca, and Mg (by ammonium acetate extraction at pH 9) were determined with Atomic absorption spectrophotometer (Bower et al., 1952). The earthworms were
collected during the soil sampling by hand-sorting, washed with water and weighed. Biomass was defined as the weight of the worms after drying for 48 h on filter paper at room temperature (Jordan et al., 1999). Soil microbial respiration (SMR) was determined by measuring the CO₂ evolved in 3 days incubation experiment at 25°C (Alef, 1995). Fine roots (< 2 mm diameter) were removed from each sample and dried at 70 °C to a constant mass (Neatrour et al., 2005). The buried-bag technique was used to estimate soil N mineralization (Asadiyan et al., 2013). Whole of these soil characters were chosen by expert opinion and literature review as important indices in soil quality (Herrick, 2000; Zhang et al., 2004; Govaerts et al., 2006; Rezaei et al., 2006; Zhang et al., 2011). Table 1 is showing the values of studied characteristics in litter and soil layers.

2.3 Data analysis and processing
In order to synthesize all the information provided by selected parameters, a SQ index was calculated. According to Karlen et al. (2003), three steps are involved in the elaboration of a quality index: (1) definition of a Minimum Data Set (MDS), (2) score assignment to each indicator by mathematical functions and (3) data integration in an index. Principal component analysis (PCA) is widely used for defining a MDS and reducing data redundancy through correlation analysis among soil properties (Andrews et al., 2002; Govaerts et al., 2006; Li et al., 2007).

Table 1 Mean values (sixteen replications in all case) of the litter and soil variable for study forest stands of Alnus subcordata C. A. M. (AS), Populus deltoids L. (PD), Taxodium distichum L. Rich. (TD) and mixed natural forest of Quercus castaneifolia C. A. Mey. - Carpinus betulus L. - Parrotia persica C. A. Meyer (QC-CB-PP)

<table>
<thead>
<tr>
<th>Litter and soil features</th>
<th>AS</th>
<th>PD</th>
<th>TD</th>
<th>QC-CB-PP</th>
<th>F-test</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litter C/N</td>
<td>21.6<sup>a</sup></td>
<td>29.28<sup>a</sup></td>
<td>63.67<sup*></sup></td>
<td>42.74<sup>b</sup></td>
<td>90.393</td>
<td>0.000</td>
</tr>
<tr>
<td>Bulk density (g cm<sup>-3</sup>)</td>
<td>1.59<sup>a</sup></td>
<td>1.56<sup>ab</sup></td>
<td>1.33<sup>c</sup></td>
<td>1.41<sup>b</sup></td>
<td>5.325</td>
<td>0.003</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>32.50</td>
<td>25.87</td>
<td>29.00</td>
<td>22.87</td>
<td>1.255</td>
<td>0.298</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>34.62<sup>b</sup></td>
<td>39.75<sup>ab</sup></td>
<td>42.37<sup>ab</sup></td>
<td>46.75<sup>a</sup></td>
<td>3.712</td>
<td>0.016</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>32.87</td>
<td>34.37</td>
<td>28.62</td>
<td>30.37</td>
<td>1.032</td>
<td>0.385</td>
</tr>
<tr>
<td>Water content (%)</td>
<td>36.76</td>
<td>37.75</td>
<td>34.56</td>
<td>38.72</td>
<td>1.165</td>
<td>0.330</td>
</tr>
<tr>
<td>pH (1:2.5 H₂O)</td>
<td>7.16<sup>c</sup></td>
<td>7.05<sup>a</sup></td>
<td>6.01<sup>c</sup></td>
<td>6.56<sup>b</sup></td>
<td>12.277</td>
<td>0.000</td>
</tr>
<tr>
<td>EC (ds m<sup>-1</sup>)</td>
<td>0.29<sup>a</sup></td>
<td>0.26<sup>b</sup></td>
<td>0.16<sup>d</sup></td>
<td>0.22<sup>c</sup></td>
<td>32.156</td>
<td>0.000</td>
</tr>
<tr>
<td>Soil C/N</td>
<td>4.50b</td>
<td>5.46b</td>
<td>28.70<sup>a</sup></td>
<td>10.37<sup>b</sup></td>
<td>11.688</td>
<td>0.000</td>
</tr>
<tr>
<td>Available P (mg kg<sup>-1</sup>)</td>
<td>24.57<sup>a</sup></td>
<td>22.30<sup>a</sup></td>
<td>12.65<sup>b</sup></td>
<td>15.79<sup>b</sup></td>
<td>15.904</td>
<td>0.000</td>
</tr>
<tr>
<td>Available K (mg kg<sup>-1</sup>)</td>
<td>337.37<sup>a</sup></td>
<td>328.25<sup>a</sup></td>
<td>156.68<sup>c</sup></td>
<td>257.81<sup>b</sup></td>
<td>35.084</td>
<td>0.000</td>
</tr>
<tr>
<td>Available Ca (mg kg<sup>-1</sup>)</td>
<td>256.25<sup>a</sup></td>
<td>208.68<sup>b</sup></td>
<td>122.81<sup>d</sup></td>
<td>177.31<sup>c</sup></td>
<td>50.674</td>
<td>0.000</td>
</tr>
<tr>
<td>Available Mg (mg kg<sup>-1</sup>)</td>
<td>57.43<sup>a</sup></td>
<td>52.12<sup>b</sup></td>
<td>36.81<sup>d</sup></td>
<td>44.00<sup>c</sup></td>
<td>34.335</td>
<td>0.000</td>
</tr>
<tr>
<td>Earthworm biomass (mg m<sup>2</sup>)</td>
<td>41.98<sup>a</sup></td>
<td>34.50<sup>ab</sup></td>
<td>6.23<sup>c</sup></td>
<td>26.26<sup>b</sup></td>
<td>10.696</td>
<td>0.000</td>
</tr>
<tr>
<td>Soil microbial respiration (mg CO₂-C g soil<sup>-1</sup> day<sup>-1</sup>)</td>
<td>0.48<sup>a</sup></td>
<td>0.43<sup>b</sup></td>
<td>0.30<sup>d</sup></td>
<td>0.36<sup>c</sup></td>
<td>22.856</td>
<td>0.000</td>
</tr>
<tr>
<td>Fine root biomass (mg m<sup>2</sup>)</td>
<td>64.60<sup>b</sup></td>
<td>65.09<sup>b</sup></td>
<td>36.93<sup>c</sup></td>
<td>94.18<sup>a</sup></td>
<td>99.292</td>
<td>0.000</td>
</tr>
<tr>
<td>Nitrogen mineralization rate (mg kg<sup>-1</sup> day<sup>-1</sup>)</td>
<td>0.31<sup>a</sup></td>
<td>0.08<sup>b</sup></td>
<td>-0.26<sup>c</sup></td>
<td>-0.24<sup>c</sup></td>
<td>95.401</td>
<td>0.000</td>
</tr>
</tbody>
</table>

*Results from the ANOVAs are included (F test and p value). Different letters in each line indicate significant differences (p< 0.05 by Duncan test) between forest stands.
To select a representative MDS, the PCA method was used because of its MDS selection ability (Doran and Parkin, 1994). We performed standardized PCA of all data that showed statistically significant differences between different forest types via one-way analysis of variance (ANOVA) using the SPSS 19.0 statistical software package. The analytical hierarchy process (AHP) method was used to assign the data integration in an index (Lai et al., 2002; Komac, 2006). An abstract view of such a hierarchy is shown in Figure 2.

In this research, Expert Choice software was used for determination of the best forest stand on basis of SQ indices using of AHP.

3 RESULTS
The soil characteristics having significant differences between the different forest types, thus, included for the PCA were: bulk density, silt, pH, EC, soil C/N, available nutrients (i.e., P, K, Ca and Mg), earthworm biomass, microbial respiration, fine root biomass, nitrogen mineralization and litter C/N (Tables 1 and 2). The first and two component had Eigen value >1 (Table 2). The highly weighted variables under PC1 and PC2 were litter C/N ratio (-0.917), nitrogen mineralization (0.826), Ca (0.825), K (0.810), Mg (0.804), microbial respiration (0.785), EC (0.783), fine root biomass (0.759) and Silt (0.710), thus, were retained for the MDS (Table 2).

Table 2 PCA results of SQ indices having significant differences between the different forest stands

<table>
<thead>
<tr>
<th>Principal components</th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigen value</td>
<td>6.843</td>
<td>1.371</td>
</tr>
<tr>
<td>Percent</td>
<td>48.879</td>
<td>9.791</td>
</tr>
<tr>
<td>Cumulative percent</td>
<td>48.879</td>
<td>58.669</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Eigen vectors- PC1</th>
<th>Eigen vectors- PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk density (g cm⁻³)</td>
<td>0.451</td>
<td>0.042</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>-0.264</td>
<td>0.710</td>
</tr>
<tr>
<td>pH (1:2.5 H₂O)</td>
<td>0.664</td>
<td>0.078</td>
</tr>
<tr>
<td>EC (ds m⁻¹)</td>
<td>0.783</td>
<td>0.111</td>
</tr>
<tr>
<td>Soil C/N</td>
<td>-0.623</td>
<td>-0.168</td>
</tr>
<tr>
<td>Available P (mg kg⁻¹)</td>
<td>0.694</td>
<td>-0.145</td>
</tr>
<tr>
<td>Available K (mg kg⁻¹)</td>
<td>0.810</td>
<td>0.141</td>
</tr>
<tr>
<td>Available Ca (mg kg⁻¹)</td>
<td>0.825</td>
<td>0.106</td>
</tr>
<tr>
<td>Available Mg (mg kg⁻¹)</td>
<td>0.804</td>
<td>-0.118</td>
</tr>
<tr>
<td>Earthworm biomass (mg m²)</td>
<td>0.635</td>
<td>0.023</td>
</tr>
<tr>
<td>Soil microbial respiration (mg CO₂-C g soil⁻¹ day⁻¹)</td>
<td>0.785</td>
<td>-0.107</td>
</tr>
<tr>
<td>Fine root biomass (g m⁻²)</td>
<td>0.347</td>
<td>0.759</td>
</tr>
<tr>
<td>Litter C/N</td>
<td>-0.917</td>
<td>-0.060</td>
</tr>
<tr>
<td>Nitrogen mineralization rate (mg kg⁻¹day⁻¹)</td>
<td>0.826</td>
<td>-0.400</td>
</tr>
</tbody>
</table>

Bold-italic factor loading correspond to the indicators included in the MDS.
Different forest types were assessed, using of AHP approach, with respect to nine criteria of soil properties that were retained for the MDS (Figure 3). Inconsistency ratio values for every soil features in AHP are shown in Figures 3 and 4. According to our findings, the inconsistency ratios were less than 0.1 for whole of characters. Results are indicating that the maximum of local priority is belonging to A. subcordata on basis of EC, available nutrients (K, Ca and Mg), microbial respiration and N mineralization. Mixed natural forest had higher local priority with regarding to silt and fine root biomass characters, whereas the T. distichum had more local priority based on litter C/N (Figure 3). Determination of the criteria role in assessment of different forest types and selection of the best forest stand as well as calculation of criteria weight were also carried out. For this purpose, the matrixes of paired comparisons were prepared and the criteria weights were calculated by arithmetic mean (Figure 4). Sensitivity analysis is according to reported results also (Figure 5). The calculated overall priority showed that based on soil quality indices, the A. subcordata (0.370) forest type had higher ecological potential compared to the other stands. Whereas, P. deltoids (0.295), mixed natural forest (0.213), and T. distichum (0.122) had next priority, respectively (Table 3).
Soil quality indices in pure and mixed forest stands

Figure 4 Criteria priority based on arithmetic mean

Figure 5 Sensitivity analysis based on performance alternative

Table 3 Overall priority of different forest stands based on soil quality indices

<table>
<thead>
<tr>
<th>Forest types</th>
<th>Overall priority</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnus subcordata</td>
<td>0.370</td>
<td>1</td>
</tr>
<tr>
<td>Populus deltoids</td>
<td>0.295</td>
<td>2</td>
</tr>
<tr>
<td>Mixed natural forest</td>
<td>0.213</td>
<td>3</td>
</tr>
<tr>
<td>Taxodium distichum</td>
<td>0.122</td>
<td>4</td>
</tr>
</tbody>
</table>

4 DISCUSSION

The study of SQ indices under each species was an approach to evaluate the performance of that species. Almost all of the nine indicators used with the MDS method can be found in previously created MDS indicator methods (Doran and Parkin, 1994; Karlen and Stott, 1994; Larson and Pierce, 1994; Singer and Ewing, 2000; Ditzler and Tugel, 2002; Masto et al., 2008; Marzaioli et al., 2010; Soleimany
Rahimabady et al., 2015). Among soil texture fractions, silt content was significantly higher under mixed natural forest in comparison to T. distichum, P. deltoids and A. subcordata plantation. This suggests a different evolution of the soil profile when covered by forest, especially in terms of erosion (Kooch et al., 2012 a, b).

The soil EC of the different species significantly follows the A. subcordata > P. deltoids > mixed natural forest > T. distichum. These differences may be caused by different foliage properties and the litter quality (Nsabimana et al., 2008; Haghdoot et al., 2011). Available K of soils of the A. subcordata was significantly higher than the soils of P. deltoids, mixed natural forest and T. distichum. In the present study, A. subcordata plantation with the highest K content can be attributed to rapid recycling of soil nutrients from trees (Chase and Singh, 2014). The lowest soil available K in T. distichum might be related to K retranslocation, nutrition and nutrient return (Rostamabadi et al., 2013). Hardwoods, including A. subcordata, typically contain a much greater amount of Ca\(^{2+}\) than to conifers, when growing on comparable sites (Ovington, 1956; Ovington, 1962). Soil Mg\(^{2+}\) had often been reported to be an element prone to leaching (Laskowski et al., 1995). The difference in the behavior of Mg may be due to the selective immobilization of nutrients by microbes (Rostamabadi et al., 2013). According to Hagen-Thorn et al. (2004), conifer species compared to hardwood stands, due to higher tendency to absorb base cations namely Mg makes reduced concentrations of these nutrients in the soil.

SMR was the lowest in T. distichum plantation as compared to other forest types. The highest SMR was found under A. subcordata plantation than can be related to the content of total N as an N-fixing species (Mo et al., 2004). Fine root biomass was significantly greater for the mixed natural forest than for the plantations. Lee and Jose (2003) reported that hardwood forests had greater fine root biomass production compared to conifer forests. The big trees in the natural stand probably contributed to a comparatively higher fine root biomass (Tamooha et al., 2008). According to Nadelhoffer and Raich (1992), fine root production and aboveground production were linked with one another and were affected by similar factors. Height and diameter increments were measured to relate with the fine root production (Dipesh and Schuler, 2013). A similar influence of stand structure on root productivity has been reported in other studies (Le Goff and Ottorini, 2001; Hertel et al., 2009). The average D.B.H of trees was found to be a good predictor for fine root biomass and productivity (Drexhage and Colin, 2001; Le Goff and Ottorini, 2001; Hertel et al., 2009). Small diameter stems caused a significant reduction in fine root biomass (Joslin et al., 2000, Jones et al., 2003). Also different composition of tree species in the natural forest, compared with the monoculture plantations, may explain the higher fine root biomass in the mixed natural forest (Yang et al., 2003; Yang et al., 2004).

Valverde-Barrantes et al. (2014) find that most of the canopy tree species in their forest behave in largely the same way, with equal fine root proliferation in high resource patches. As a result of this species roots tend to aggregate in nutrient rich soils, resulting in a greater diversity of species within a given patch. They further find that fine root biomass and species diversity are greater in these soils (Jones, 2015). Dipesh and Schuler (2013) pointed that younger stands have less fine root production than the older stands. Fine roots could be easily affected by soil environmental factors (Eissenstat et al., 2000; Xu et al., 2013). The soil in A. subcordata and P. deltoids was more fertile and was in favor of the growth of fine root. The rich nutrients were in favor of fine root growth. The high fertility in the upper soil layer was a vital
factor affecting fine roots plantation (Wang et al., 2014).

Nitrogen-fixing species plantations could increase soil nitrogen mineralization (Berg et al., 2001; Rothe et al., 2002). The difference in soil nitrogen mineralization was due to difference in availability of labile N substrates (McKinley et al., 2008). High-quality litter decrease microbial immobilization of nitrogen, and result in enhanced Nmin and plant available N (McKinley et al., 2008). Van der Krift et al. (2001) found soil N mineralization of 5- and 15-year-old mixed poplar stands were greater than those of corresponding pure poplar stands. It has been reported that there was a negative relationship between the C/N and soil nitrogen mineralization in various ecosystems (Van der Krift et al., 2001; Arslan et al., 2010). We found a less nitrogen mineralization in forest types with higher C/N that is similar with Zeller et al. (2000) and Arslan et al. (2010) findings.

Litter C/N was the lowest in A. subcordata plantation as compared to other species and mixed natural forest. The narrow C/N was a precondition for the fast decomposition of organic matter (Ohta and Kumada, 1978). The C/N in the foliage of broadleaf species in the temperate zone is on average 25 (Vitousek et al., 1988). C/N in organic litter was narrowed, because their dying led to the input of organic matter rich in nitrogen. Narrow C/N in the litter fall under A. subcordata monocultures caused the greatest part of carbon to be converted into CO₂ by oxidative processes as the end of product of organic matter decomposition. Because of the decomposition of A. subcordata dead organic residues into end products, there was no intensive accumulation of organic C and N under A. subcordata plantations (Miletić et al., 2012). Significantly higher C/N were found in the T. distichum stand these results underline the more recalcitrant nature of coniferous litter, probably due to the hard cuticle of needles, and could suggest a longer mean residence time of this organic matter (Kooch et al., 2012b). According to our findings, based on different SQ indices, the A. subcordata forest type had higher ecological potential compared to the other stands. Whereas, P. deltoids, mixed natural forest, and T. distichum had next priority, respectively.

5 CONCLUSION
Due to increasingly destruction of Hyrcanian Forests, plantation with native species was an appropriate method for rehabilitation and reconstruction of destroyed forest areas. To select a species, in addition to growth quantity and quality the effects of species in ecosystem, restoration should also be noted. Evaluation of trees in terms of soil moderator of different habitats conditions and classification of tree species based on achieved results were necessary. It appears using AHP gives a broad perspective in relation to the assessment of forest stands and can be considered an appropriate strategy. Using of AHP approach, as a conclusion, the N-fixing species, A. subcordata, is more efficient in improving soil quality in degraded land.

6 ACKNOWLEDGEMENT
Many thanks are due to Mr. Mohammad Beiranvand and Mr. Ali Khudadoost for their tireless assistance in field sampling. The authors are particularly grateful to Eng. Sadegh Boor for his expert technical assistance and to all the laboratory assistants at the faculty for analyzing the samples. This research was done by financial supports of Tarbiat Modares University, Iran, in the form of a Master science thesis of forestry.

7 REFERENCES

Komac, M. A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in per

Mc Kinley, D.C., Rice, C.W. and Blair, J.M. Conversion of grassland to coniferous woodland has limited effects on soil nitrogen cycle processes. Soil Biol. Biochem., 2008; 40: 2627-2633.

شاخص‌های کیفیت خاک در توده‌های جنگلی خالص و آمیخته منطقه جنوبی دریای خزر

پیچ کوچک، قاطعه روستایی، و سید محسن حسینی

۱- استادیار، دانشگاه منابع طبیعی، دانشگاه تربیت مدرس، ایران
۲- دانشجوی کارشناسی ارشد، دانشگاه منابع طبیعی، دانشگاه تربیت مدرس، ایران
۳- استاد گروه جنگلداری، دانشگاه منابع طبیعی، دانشگاه تربیت مدرس، ایران

تاریخ دریافت: ۹ فروردین ۱۳۹۴ / تاریخ پذیرش: ۱۲ مرداد ۱۳۹۴ / تاریخ پذیرش: ۹ آبان ۱۳۹۴

چکیده: پژوهش حاضر با هدف ارزیابی گونه‌های خالص کاشته شده (شامل توسا بیلافی، سنوبردلوندیس، دارالاب) و توده طبیعی آمیخته‌ی (با گونه‌های خالص - مزرعه - انجیلی) بر مبنای برخی شاخص‌های کیفیت خاک در استان مازندران، شمال ایران، صورت پذیرفت. در هر یک از توده‌های مورد بررسی، تعداد ۱۶ نمونه خاک (۱۰-۰۰-۰۰ سانتی‌متر) برداشت و مشخصه‌های جغالتی و ظاهری، بافت، محتوی رطوبت، pH هدایت الکتریکی، کربن آلی، نیتروژن کل، عناصر غذایی قابل جذب، زینتوکروم خاکی، تنفس میکروبی، زینتوکروم و نیتروژن لاشیگر در محیط آزمایشگاه اندازه گیری شد. از بین متغیرهای مورد بررسی، تعداد سلول‌های الکتریکی، تنفس کلیم، تنفس میکروبی، زینتوکروم و نیتروژن لاشیگر بی‌بی سایتی تجزیه مولفه‌های اصلی به عنوان حافظ مجموعه داده‌ها انتخاب شدند. به منظور ارائه مجموعه داده‌ها در یک شاخص، تحلیل فراپید سلسله مرتبی (AHP) به کار گرفته شد. وزن نهایی محاسبه شده بر مبنای نهایی میانگین داد که توده جنگلی توسا دارای توان اکولوژیکی (۲۷۰/۰۰) بالاتری نسبت به توده‌های دیگر می‌باشد و توده‌های صنوبر طبیعی آمیخته و دارالاب به ترتیب با توان اکولوژیکی (۲۱۳/۰۰ و ۲۱۳/۰۰) در مراحل بعدی خارج می‌گردد. به عناوین نتیجه‌گیری، می‌توان اظهار نمود که گونه‌شناسی کننده ات. توسا بیلافی، دارای برخی برتری برای بهبود کیفیت خاک در مناطق جنگلی تخریب‌پذیران داشته است.

کلمات کلیدی: جنگل‌های هیرکانی، گونه‌های پهن‌برگ، گونه‌های سوزنی‌برگ، مرکز بدر جنگلی خزر، مشخصه‌های خاک